Abodh Poudyal

ELECTRICAL ENGINEER | PH.D. STUDENT

1630 NE Vallev Rd Q107. Pullman. WA 99163

Sector Control Con

Power Systems Engineer with about 4 years of experience as a researcher at Washington State University and South Dakota State University. I am actively working on the spatiotemporal modeling of extreme weather-related events and its impact on power systems, with a focus on power distribution systems. Additionally, I am also interested in developing risk-driven power distribution planning framework to develop resilience against extreme stochastic events in power distribution systems. I am a quick learner and an enthusiastic and persistent researcher. I have grown my research expertise in several domains such as power distribution modeling and optimization, power system analysis, operations research, machine learning, and high-performance computing.

Experience

Washington State University

GRADUATE RESEARCH ASSISTANT

- Developing a risk-averse long-term planning model in power distribution systems for resilience against extreme events via stochastic optimization framework.
- Developing an impact assessment framework for combined T&D network using HELICS as a co-simulation platform.
- · Mentored two high school interns to develop a framework for analyzing the spatiotemporal impact of extreme events on a power grid.

Energy System Innovation Center, WSU

GRADUATE RESEARCH INTERN

- Familiarized with ADMS via GridAPPS-D platform and distribution system application development using GridAPPS-D on docker containers.
- Implemented linearized power flow algorithms on standard distribution system test cases using graph theory and search algorithms.
- Got acquainted with distribution system modeling, analysis, and power flow using Open Distribution System Simulator (OpenDSS).

Education	
Washington State University	Pullman, WA
PH.D. IN ELECTRICAL ENGINEERING (GPA: 4.0 OUT OF 4.0) – Major - Power Systems, Minor - Computer Science	Aug. 2020 - Present
• Research — Extreme Events and Impact Modeling towards Risk-Averse Resilience Planning in Power Systems.	
South Dakota State University	Brookings, SD
M.S. IN ELECTRICAL ENGINEERING (GPA: 4.0 OUT OF 4.0) – Major - Power Systems	Aug. 2018 - Aug. 2020
• Thesis Title — Distributed Machine Learning Approach to Fast Frequency Response-based Inertia Estimation in Low Inertia Grids	
Relevant Projects	
RISK-AVERSE LONG-TERM PLANNING IN POWER DISTRIBUTION SYSTEMS Developing a framework that optimizes risk-averse decision making process for long-term planning in power distribution 	2021-Present on systems.
 SPATIOTEMPORAL HURRICANE AND ITS IMPACT MODEL Simulated mathematical model of hurricanes, based on real hurricanes occured in the past, based on geographical info Quantified spatiotemporal impact of the hurricanes on the power grid. 	2021 ormation.
 MULTI-AREA INERTIA ESTIMATION USING CNN AND FEDERATED LEARNING Developed a decentralized data-driven inertia estimation framework that is generator independent and depends only measurements. Applied Federated Learning for decentralized estimation that also ensures differential privacy in the power systems — facyber security. 	2020 Y on the local frequency acilitating provisions for
Skills	

Coding Languages Python, Julia, MATLAB, C, C++, R, CUDA, HTML, &TFX **Development Tools** Matpower, PowerWorld, OpenDSS, GridLAB-D, GridAPPS-D, PyTorch, MPI, Docker

Publications

- [J1] A. Poudyal, U. Tamrakar, R. D. Trevizan, R. Fourney, R. Tonkoski, and T. M. Hansen, "Multi-Area Inertia Estimation using Convolutional Neural Networks and Federated Learning", IEEE Systems Journal, 2021 (in second round of review).
- [J2] A. Poudyal, S. Poudel, and A. Dubey, "Risk-Averse Long-term Power Distribution Systems Planning for Resilience to Extreme Weather Events", *IEEE Transactions on Sustainable Energy* (in preparation).
- [J3] S. Paul, A. Poudyal, S. Poudel, and A. Dubey, "Resilience Metrics and Planning in Power Distribution Systems: Past and Future Considerations", Renewable and Sustainable Energy Reviews (in preparation).
- [C1] A. Poudyal, U. Tamrakar, R. D. Trevizan, R. Fourney, R. Tonkoski, and T. M. Hansen, "Convolutional Neural Network-based Inertia Estimation using Local Frequency Measurements", in 2020 52nd North American Power Symposium (NAPS), Jun. 2021, pp. 1-6.
- [C2] A. Poudyal, V. Iyenger, D. G. Camaro, and A. Dubey, "Modeling Spatiotemporal Hurricane Events and its Impact on a Power Grid", in 2022 IEEE PES General Meeting (Submitted).
- [C3] A. Poudyal and S. Poudel, "Quantifying Planning-based Resilience in Power Distribution System using Multi-Criteria Decision Making Process", in International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2022 (in preparation).

Pullman, WA

Pullman, WA

May. 2020 - Aug. 2020

August 2020 - Present